7 minute read

The continuity of my practice on Pandas exercise from guisapmora.

Alcohol Consumption Dataset

Introduction:

GroupBy can be summarized as Split-Apply-Combine.

Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.

Check out this Diagram

Step 1. Import the necessary libraries

import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called drinks.

url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/drinks.csv'
drinks = pd.read_csv(url)

Step 4. Which continent drinks more beer on average?

drinks[drinks['beer_servings'] > drinks['beer_servings'].mean()].groupby(['continent']).count()
country beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol
continent
AF 8 8 8 8 8
AS 4 4 4 4 4
EU 35 35 35 35 35
OC 4 4 4 4 4
SA 11 11 11 11 11

Step 5. For each continent print the statistics for wine consumption.

drinks.groupby(['continent']).sum()['wine_servings']
continent
AF     862
AS     399
EU    6400
OC     570
SA     749
Name: wine_servings, dtype: int64

Step 6. Print the mean alcohol consumption per continent for every column

drinks.groupby(['continent']).mean()
beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol
continent
AF 61.471698 16.339623 16.264151 3.007547
AS 37.045455 60.840909 9.068182 2.170455
EU 193.777778 132.555556 142.222222 8.617778
OC 89.687500 58.437500 35.625000 3.381250
SA 175.083333 114.750000 62.416667 6.308333

Step 7. Print the median alcohol consumption per continent for every column

drinks.groupby(['continent']).median()
beer_servings spirit_servings wine_servings total_litres_of_pure_alcohol
continent
AF 32.0 3.0 2.0 2.30
AS 17.5 16.0 1.0 1.20
EU 219.0 122.0 128.0 10.00
OC 52.5 37.0 8.5 1.75
SA 162.5 108.5 12.0 6.85

Step 8. Print the mean, min and max values for spirit consumption.

This time output a DataFrame

pd.DataFrame(data = {'mean' : drinks.groupby(['continent']).mean()['spirit_servings'], 
                    'min' : drinks.groupby(['continent']).min()['spirit_servings'],
                    'max' : drinks.groupby(['continent']).max()['spirit_servings']})
mean min max
continent
AF 16.339623 0 152
AS 60.840909 0 326
EU 132.555556 0 373
OC 58.437500 0 254
SA 114.750000 25 302

Occupation Dataset

Introduction:

Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.

Step 1. Import the necessary libraries

import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users.

url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/u.user'
users = pd.read_csv(url, sep='|')

Step 4. Discover what is the mean age per occupation

users.groupby(['occupation']).mean()['age']
occupation
administrator    38.746835
artist           31.392857
doctor           43.571429
educator         42.010526
engineer         36.388060
entertainment    29.222222
executive        38.718750
healthcare       41.562500
homemaker        32.571429
lawyer           36.750000
librarian        40.000000
marketing        37.615385
none             26.555556
other            34.523810
programmer       33.121212
retired          63.071429
salesman         35.666667
scientist        35.548387
student          22.081633
technician       33.148148
writer           36.311111
Name: age, dtype: float64

Step 5. Discover the Male ratio per occupation and sort it from the most to the least

(users[users['gender'] == 'M'].groupby(['occupation']).count()['gender'] / \
 users.groupby(['occupation']).count()['gender']).sort_values(ascending=False)
occupation
doctor           1.000000
engineer         0.970149
technician       0.962963
retired          0.928571
programmer       0.909091
executive        0.906250
scientist        0.903226
entertainment    0.888889
lawyer           0.833333
salesman         0.750000
educator         0.726316
student          0.693878
other            0.657143
marketing        0.615385
writer           0.577778
none             0.555556
administrator    0.544304
artist           0.535714
librarian        0.431373
healthcare       0.312500
homemaker        0.142857
Name: gender, dtype: float64

Step 6. For each occupation, calculate the minimum and maximum ages

pd.DataFrame(data = {'min' : users.groupby(['occupation']).min()['age'],
                     'max' : users.groupby(['occupation']).max()['age']})
min max
occupation
administrator 21 70
artist 19 48
doctor 28 64
educator 23 63
engineer 22 70
entertainment 15 50
executive 22 69
healthcare 22 62
homemaker 20 50
lawyer 21 53
librarian 23 69
marketing 24 55
none 11 55
other 13 64
programmer 20 63
retired 51 73
salesman 18 66
scientist 23 55
student 7 42
technician 21 55
writer 18 60

Step 7. For each combination of occupation and gender, calculate the mean age

users.groupby(['occupation', 'gender']).mean()['age']
occupation     gender
administrator  F         40.638889
               M         37.162791
artist         F         30.307692
               M         32.333333
doctor         M         43.571429
educator       F         39.115385
               M         43.101449
engineer       F         29.500000
               M         36.600000
entertainment  F         31.000000
               M         29.000000
executive      F         44.000000
               M         38.172414
healthcare     F         39.818182
               M         45.400000
homemaker      F         34.166667
               M         23.000000
lawyer         F         39.500000
               M         36.200000
librarian      F         40.000000
               M         40.000000
marketing      F         37.200000
               M         37.875000
none           F         36.500000
               M         18.600000
other          F         35.472222
               M         34.028986
programmer     F         32.166667
               M         33.216667
retired        F         70.000000
               M         62.538462
salesman       F         27.000000
               M         38.555556
scientist      F         28.333333
               M         36.321429
student        F         20.750000
               M         22.669118
technician     F         38.000000
               M         32.961538
writer         F         37.631579
               M         35.346154
Name: age, dtype: float64

Step 8. For each occupation present the percentage of women and men

pd.DataFrame(data = {'male percentage' : users[users['gender'] == 'M'].groupby(['occupation']).count()['gender'] / \
                     users.groupby(['occupation']).count()['gender'] * 100,
                    'female percentage' : users[users['gender'] == 'F'].groupby(['occupation']).count()['gender'] / \
                    users.groupby(['occupation']).count()['gender'] * 100}) 
male percentage female percentage
occupation
administrator 54.430380 45.569620
artist 53.571429 46.428571
doctor 100.000000 NaN
educator 72.631579 27.368421
engineer 97.014925 2.985075
entertainment 88.888889 11.111111
executive 90.625000 9.375000
healthcare 31.250000 68.750000
homemaker 14.285714 85.714286
lawyer 83.333333 16.666667
librarian 43.137255 56.862745
marketing 61.538462 38.461538
none 55.555556 44.444444
other 65.714286 34.285714
programmer 90.909091 9.090909
retired 92.857143 7.142857
salesman 75.000000 25.000000
scientist 90.322581 9.677419
student 69.387755 30.612245
technician 96.296296 3.703704
writer 57.777778 42.222222

Regiment Dataset

Introduction:

Special thanks to: http://chrisalbon.com/ for sharing the dataset and materials.

Step 1. Import the necessary libraries

import pandas as pd

Step 2. Create the DataFrame with the following values:

raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}

Step 3. Assign it to a variable called regiment.

Don’t forget to name each column

regiment = pd.DataFrame(raw_data)

Step 4. What is the mean preTestScore from the regiment Nighthawks?

regiment.groupby(['regiment']).mean().filter(['Nighthawks'], axis=0)['preTestScore']
regiment
Nighthawks    15.25
Name: preTestScore, dtype: float64

Step 5. Present general statistics by company

regiment.groupby(['company']).describe()
preTestScore postTestScore
count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max
company
1st 6.0 6.666667 8.524475 2.0 3.00 3.5 4.00 24.0 6.0 57.666667 27.485754 25.0 34.25 66.0 70.0 94.0
2nd 6.0 15.500000 14.652645 2.0 2.25 13.5 29.25 31.0 6.0 67.000000 14.057027 57.0 58.25 62.0 68.0 94.0

Step 6. What is the mean of each company’s preTestScore?

regiment.groupby(['company']).mean()['preTestScore']
company
1st     6.666667
2nd    15.500000
Name: preTestScore, dtype: float64

Step 7. Present the mean preTestScores grouped by regiment and company

regiment.groupby(['regiment', 'company']).mean()['preTestScore']
regiment    company
Dragoons    1st         3.5
            2nd        27.5
Nighthawks  1st        14.0
            2nd        16.5
Scouts      1st         2.5
            2nd         2.5
Name: preTestScore, dtype: float64

Step 8. Present the mean preTestScores grouped by regiment and company without heirarchical indexing

regiment.groupby(['regiment', 'company']).mean()['preTestScore'].unstacktack()
company 1st 2nd
regiment
Dragoons 3.5 27.5
Nighthawks 14.0 16.5
Scouts 2.5 2.5

Step 9. Group the entire dataframe by regiment and company

regiment.groupby(['regiment', 'company']).describe()
preTestScore postTestScore
count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max
regiment company
Dragoons 1st 2.0 3.5 0.707107 3.0 3.25 3.5 3.75 4.0 2.0 47.5 31.819805 25.0 36.25 47.5 58.75 70.0
2nd 2.0 27.5 4.949747 24.0 25.75 27.5 29.25 31.0 2.0 75.5 26.162951 57.0 66.25 75.5 84.75 94.0
Nighthawks 1st 2.0 14.0 14.142136 4.0 9.00 14.0 19.00 24.0 2.0 59.5 48.790368 25.0 42.25 59.5 76.75 94.0
2nd 2.0 16.5 20.506097 2.0 9.25 16.5 23.75 31.0 2.0 59.5 3.535534 57.0 58.25 59.5 60.75 62.0
Scouts 1st 2.0 2.5 0.707107 2.0 2.25 2.5 2.75 3.0 2.0 66.0 5.656854 62.0 64.00 66.0 68.00 70.0
2nd 2.0 2.5 0.707107 2.0 2.25 2.5 2.75 3.0 2.0 66.0 5.656854 62.0 64.00 66.0 68.00 70.0

Step 10. What is the number of observations in each regiment and company

regiment.groupby(['regiment', 'company']).count()
name preTestScore postTestScore
regiment company
Dragoons 1st 2 2 2
2nd 2 2 2
Nighthawks 1st 2 2 2
2nd 2 2 2
Scouts 1st 2 2 2
2nd 2 2 2

Step 11. Iterate over a group and print the name and the whole data from the regiment

for group in regiment.groupby(['regiment']):
    print(group)
('Dragoons',    regiment company    name  preTestScore  postTestScore
4  Dragoons     1st   Cooze             3             70
5  Dragoons     1st   Jacon             4             25
6  Dragoons     2nd  Ryaner            24             94
7  Dragoons     2nd    Sone            31             57)
('Nighthawks',      regiment company      name  preTestScore  postTestScore
0  Nighthawks     1st    Miller             4             25
1  Nighthawks     1st  Jacobson            24             94
2  Nighthawks     2nd       Ali            31             57
3  Nighthawks     2nd    Milner             2             62)
('Scouts',    regiment company   name  preTestScore  postTestScore
8    Scouts     1st  Sloan             2             62
9    Scouts     1st  Piger             3             70
10   Scouts     2nd  Riani             2             62
11   Scouts     2nd    Ali             3             70)

Leave a comment