19 minute read

The continuity of my practice on Pandas exercise from guisapmora.

US - Baby Names Dataset

Introduction:

We are going to use a subset of US Baby Names from Kaggle.
In the file it will be names from 2004 until 2014

Step 1. Import the necessary libraries

import pandas as pd

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called baby_names.

url = 'https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/06_Stats/US_Baby_Names/US_Baby_Names_right.csv'
baby_name = pd.read_csv(url)

Step 4. See the first 10 entries

baby_name.head(10)
Unnamed: 0 Id Name Year Gender State Count
0 11349 11350 Emma 2004 F AK 62
1 11350 11351 Madison 2004 F AK 48
2 11351 11352 Hannah 2004 F AK 46
3 11352 11353 Grace 2004 F AK 44
4 11353 11354 Emily 2004 F AK 41
5 11354 11355 Abigail 2004 F AK 37
6 11355 11356 Olivia 2004 F AK 33
7 11356 11357 Isabella 2004 F AK 30
8 11357 11358 Alyssa 2004 F AK 29
9 11358 11359 Sophia 2004 F AK 28

Step 5. Delete the column ‘Unnamed: 0’ and ‘Id’

baby_name = baby_name.drop(columns=['Unnamed: 0', 'Id'], axis=1)

Step 6. Is there more male or female names in the dataset?

baby_name['Gender'].value_counts()
F    558846
M    457549
Name: Gender, dtype: int64

Step 7. Group the dataset by name and assign to names

names = baby_name.groupby(['Name']).count()

Step 8. How many different names exist in the dataset?

names.shape[0]
17632

Step 9. What is the name with most occurrences?

names['Count'].sort_values(ascending=False).head(1)
Name
Riley    1112
Name: Count, dtype: int64

Step 10. How many different names have the least occurrences?

names[names['Count'] == names['Count'].min()].shape[0]
3682

Step 11. What is the median name occurrence?

names['Count'].median()
8.0

Step 12. What is the standard deviation of names?

names['Count'].std()
122.02996350814125

Step 13. Get a summary with the mean, min, max, std and quartiles.

names['Count'].describe()
count    17632.000000
mean        57.644907
std        122.029964
min          1.000000
25%          2.000000
50%          8.000000
75%         39.000000
max       1112.000000
Name: Count, dtype: float64

Wind Statistics Dateset

Introduction:

The data have been modified to contain some missing values, identified by NaN.
Using pandas should make this exercise easier, in particular for the bonus question.

You should be able to perform all of these operations without using a for loop or other looping construct.

  1. The data in ‘wind.data’ has the following format:
"""
Yr Mo Dy   RPT   VAL   ROS   KIL   SHA   BIR   DUB   CLA   MUL   CLO   BEL   MAL
61  1  1 15.04 14.96 13.17  9.29   NaN  9.87 13.67 10.25 10.83 12.58 18.50 15.04
61  1  2 14.71   NaN 10.83  6.50 12.62  7.67 11.50 10.04  9.79  9.67 17.54 13.83
61  1  3 18.50 16.88 12.33 10.13 11.17  6.17 11.25   NaN  8.50  7.67 12.75 12.71
"""
'\nYr Mo Dy   RPT   VAL   ROS   KIL   SHA   BIR   DUB   CLA   MUL   CLO   BEL   MAL\n61  1  1 15.04 14.96 13.17  9.29   NaN  9.87 13.67 10.25 10.83 12.58 18.50 15.04\n61  1  2 14.71   NaN 10.83  6.50 12.62  7.67 11.50 10.04  9.79  9.67 17.54 13.83\n61  1  3 18.50 16.88 12.33 10.13 11.17  6.17 11.25   NaN  8.50  7.67 12.75 12.71\n'

The first three columns are year, month and day. The remaining 12 columns are average windspeeds in knots at 12 locations in Ireland on that day.

More information about the dataset go here.

Step 1. Import the necessary libraries

import pandas as pd

Step 2. Import the dataset from this address

Step 3. Assign it to a variable called data and replace the first 3 columns by a proper datetime index.

url = 'https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/06_Stats/Wind_Stats/wind.data'
data = pd.read_csv(url, sep='\s+', parse_dates=[0,1,2])

Step 4. Year 2061? Do we really have data from this year? Create a function to fix it and apply it.

data['Yr'] = data['Yr'].apply(lambda x : '19' + x)

Step 5. Set the right dates as the index. Pay attention at the data type, it should be datetime64[ns].

data.set_index(pd.to_datetime(data['Yr']+data['Mo']+data['Dy'], format='%Y%m%d'), inplace=True)
data.drop(columns=['Yr', 'Mo', 'Dy'], axis=1, inplace=True)

Step 6. Compute how many values are missing for each location over the entire record.

They should be ignored in all calculations below.

data.isna().sum()
RPT    6
VAL    3
ROS    2
KIL    5
SHA    2
BIR    0
DUB    3
CLA    2
MUL    3
CLO    1
BEL    0
MAL    4
dtype: int64

Step 7. Compute how many non-missing values there are in total.

(data.count() - data.isna().sum()).sum()
78826

Step 8. Calculate the mean windspeeds of the windspeeds over all the locations and all the times.

A single number for the entire dataset.

data.mean().mean()
10.227982360836924

Step 9. Create a DataFrame called loc_stats and calculate the min, max and mean windspeeds and standard deviations of the windspeeds at each location over all the days

A different set of numbers for each location.

loc_stats = pd.DataFrame(data.describe()).T
loc_stats
count mean std min 25% 50% 75% max
RPT 6568.0 12.362987 5.618413 0.67 8.12 11.71 15.92 35.80
VAL 6571.0 10.644314 5.267356 0.21 6.67 10.17 14.04 33.37
ROS 6572.0 11.660526 5.008450 1.50 8.00 10.92 14.67 33.84
KIL 6569.0 6.306468 3.605811 0.00 3.58 5.75 8.42 28.46
SHA 6572.0 10.455834 4.936125 0.13 6.75 9.96 13.54 37.54
BIR 6574.0 7.092254 3.968683 0.00 4.00 6.83 9.67 26.16
DUB 6571.0 9.797343 4.977555 0.00 6.00 9.21 12.96 30.37
CLA 6572.0 8.495053 4.499449 0.00 5.09 8.08 11.42 31.08
MUL 6571.0 8.493590 4.166872 0.00 5.37 8.17 11.19 25.88
CLO 6573.0 8.707332 4.503954 0.04 5.33 8.29 11.63 28.21
BEL 6574.0 13.121007 5.835037 0.13 8.71 12.50 16.88 42.38
MAL 6570.0 15.599079 6.699794 0.67 10.71 15.00 19.83 42.54

Step 10. Create a DataFrame called day_stats and calculate the min, max and mean windspeed and standard deviations of the windspeeds across all the locations at each day.

A different set of numbers for each day.

day_stats = pd.DataFrame(data.T.describe().T)
day_stats
count mean std min 25% 50% 75% max
1961-01-01 11.0 13.018182 2.808875 9.29 10.5400 13.170 15.0000 18.50
1961-01-02 11.0 11.336364 3.188994 6.50 9.7300 10.830 13.2250 17.54
1961-01-03 11.0 11.641818 3.681912 6.17 9.3150 11.250 12.7300 18.50
1961-01-04 12.0 6.619167 3.198126 1.79 4.5700 5.855 9.1175 11.75
1961-01-05 12.0 10.630000 2.445356 6.17 9.8075 11.170 12.1700 13.33
... ... ... ... ... ... ... ... ...
1978-12-27 12.0 16.708333 7.868076 8.08 13.8025 15.025 17.3025 40.08
1978-12-28 12.0 15.150000 9.687857 5.00 9.0950 13.895 16.7000 41.46
1978-12-29 12.0 14.890000 5.756836 8.71 10.4775 14.210 17.0350 29.58
1978-12-30 12.0 15.367500 5.540437 9.13 12.3750 13.455 18.1850 28.79
1978-12-31 12.0 15.402500 5.702483 9.59 11.5300 12.080 19.5200 27.29

6574 rows × 8 columns

Step 11. Find the average windspeed in January for each location.

Treat January 1961 and January 1962 both as January.

data[data.index.month == 1].mean()
RPT    14.407735
VAL    12.362146
ROS    13.290470
KIL     6.926239
SHA    11.205064
BIR     7.827393
DUB    11.953120
CLA     9.377511
MUL     9.469915
CLO     9.880812
BEL    14.582350
MAL    18.332051
dtype: float64

Step 12. Downsample the record to a yearly frequency for each location.

data.groupby(data.index.year).mean()
RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL
1961 12.299583 10.351796 11.362369 6.958227 10.881763 7.729726 9.733923 8.858788 8.647652 9.835577 13.502795 13.680773
1962 12.246923 10.110438 11.732712 6.960440 10.657918 7.393068 11.020712 8.793753 8.316822 9.676247 12.930685 14.323956
1963 12.813452 10.836986 12.541151 7.330055 11.724110 8.434712 11.075699 10.336548 8.903589 10.224438 13.638877 14.999014
1964 12.363661 10.920164 12.104372 6.787787 11.454481 7.570874 10.259153 9.467350 7.789016 10.207951 13.740546 14.910301
1965 12.451370 11.075534 11.848767 6.858466 11.024795 7.478110 10.618712 8.879918 7.907425 9.918082 12.964247 15.591644
1966 13.461973 11.557205 12.020630 7.345726 11.805041 7.793671 10.579808 8.835096 8.514438 9.768959 14.265836 16.307260
1967 12.737151 10.990986 11.739397 7.143425 11.630740 7.368164 10.652027 9.325616 8.645014 9.547425 14.774548 17.135945
1968 11.835628 10.468197 11.409754 6.477678 10.760765 6.067322 8.859180 8.255519 7.224945 7.832978 12.808634 15.017486
1969 11.166356 9.723699 10.902000 5.767973 9.873918 6.189973 8.564493 7.711397 7.924521 7.754384 12.621233 15.762904
1970 12.600329 10.726932 11.730247 6.217178 10.567370 7.609452 9.609890 8.334630 9.297616 8.289808 13.183644 16.456027
1971 11.273123 9.095178 11.088329 5.241507 9.440329 6.097151 8.385890 6.757315 7.915370 7.229753 12.208932 15.025233
1972 12.463962 10.561311 12.058333 5.929699 9.430410 6.358825 9.704508 7.680792 8.357295 7.515273 12.727377 15.028716
1973 11.828466 10.680493 10.680493 5.547863 9.640877 6.548740 8.482110 7.614274 8.245534 7.812411 12.169699 15.441096
1974 13.643096 11.811781 12.336356 6.427041 11.110986 6.809781 10.084603 9.896986 9.331753 8.736356 13.252959 16.947671
1975 12.008575 10.293836 11.564712 5.269096 9.190082 5.668521 8.562603 7.843836 8.797945 7.382822 12.631671 15.307863
1976 11.737842 10.203115 10.761230 5.109426 8.846339 6.311038 9.149126 7.146202 8.883716 7.883087 12.332377 15.471448
1977 13.099616 11.144493 12.627836 6.073945 10.003836 8.586438 11.523205 8.378384 9.098192 8.821616 13.459068 16.590849
1978 12.504356 11.044274 11.380000 6.082356 10.167233 7.650658 9.489342 8.800466 9.089753 8.301699 12.967397 16.771370

Step 13. Downsample the record to a monthly frequency for each location.

data.groupby(data.index.month).mean()
RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL
1 14.407735 12.362146 13.290470 6.926239 11.205064 7.827393 11.953120 9.377511 9.469915 9.880812 14.582350 18.332051
2 13.710906 12.111122 12.879132 6.942411 11.551772 7.633858 11.206024 9.341437 9.313169 9.518051 13.728898 17.156142
3 13.158687 11.505842 12.648118 7.265907 11.554516 7.959409 11.310179 9.635896 9.700324 10.096953 13.810609 16.909317
4 12.555648 10.429759 12.204815 6.898037 10.677667 7.441389 10.221315 8.909056 8.930870 9.158019 12.664759 14.937611
5 11.724032 10.145619 11.550394 6.307487 10.224301 6.942061 8.797738 8.452903 8.040806 8.524857 12.767258 13.736039
6 10.451317 8.949704 10.361315 5.652278 9.529926 6.410093 8.009556 7.920796 7.639796 7.729185 12.246407 12.861818
7 9.992007 8.357778 9.349642 5.416935 9.302634 5.972348 7.843501 7.262760 7.544480 7.321416 11.676505 12.800789
8 10.213411 8.415143 9.993441 5.270681 8.901559 5.891057 7.772312 6.842025 7.240573 7.002783 11.110090 12.565943
9 11.458519 9.981002 10.756883 5.615176 9.766315 6.566222 8.609722 7.745677 7.610556 7.689278 12.686389 14.761963
10 12.660610 11.010681 11.453943 6.065215 10.550251 7.159910 9.387778 8.726308 8.347181 8.850376 14.155323 16.697151
11 13.778291 12.140912 12.663775 6.567949 10.952411 7.447849 11.137247 8.753590 8.874886 9.258917 14.044117 18.066268
12 14.486328 12.456597 13.100194 6.903722 11.354931 7.959569 11.711028 9.246833 9.439875 9.721625 14.257306 18.476042

Step 14. Downsample the record to a weekly frequency for each location.

data.groupby(data.index.isocalendar().week).mean()
RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL
week
1 13.920000 11.710880 12.853016 6.617302 10.473175 7.578492 11.623651 9.123600 9.272222 9.870635 14.241746 18.249841
2 15.444717 13.504528 14.104717 7.094906 12.230566 8.184717 12.113585 9.939245 9.692264 9.559434 14.948302 18.242830
3 13.676154 11.921538 13.295385 6.330769 11.052308 8.214615 11.654615 9.586154 9.337692 9.860769 14.151538 19.094615
4 16.208333 14.823333 16.127500 7.858333 13.040833 8.395000 13.055833 10.645833 10.765000 11.393333 16.794167 20.674167
5 14.640098 12.991569 13.281667 7.487647 11.969118 8.234902 12.148333 9.689216 9.834118 10.153431 14.735392 17.584608
6 13.203730 11.508492 12.142619 6.469127 11.025476 7.166746 11.115317 8.894206 9.323413 9.298175 13.903254 17.921587
7 14.517460 12.681349 13.219524 7.148160 12.141032 7.906190 11.390238 9.749524 9.417778 9.605476 13.776667 17.130159
8 13.422857 11.822937 13.367381 7.142400 11.480635 7.729683 11.329048 9.329762 9.247063 9.541984 13.132302 16.882540
9 12.761360 11.837460 12.627440 6.620000 10.937143 7.457778 10.622778 9.387778 8.864160 9.611508 13.724048 16.602080
10 13.526720 11.758095 13.151667 7.317063 11.477143 7.965397 10.751111 9.151825 9.367302 9.761429 13.055000 16.047381
11 13.597143 11.495079 13.032698 7.446270 11.689206 7.990238 11.444365 10.038968 9.783730 10.398730 13.823968 17.331280
12 13.006825 11.621032 12.579048 7.390476 11.850476 8.288095 12.008413 10.136746 10.176270 10.259048 14.389524 17.859365
13 12.772540 11.076349 12.104444 7.386640 11.664286 8.042063 11.306587 9.494365 9.977760 10.038571 14.241667 16.486508
14 13.903968 11.025238 14.149286 7.798968 11.482857 8.006905 11.525238 9.579921 9.894762 9.948175 13.386270 16.691349
15 12.599444 9.966667 11.654286 6.758175 10.642540 7.377778 10.677143 9.328413 9.248333 9.338413 12.842460 15.900476
16 12.753968 11.111587 11.966587 7.110000 10.983730 7.660794 9.981905 8.763571 8.802063 9.326905 12.472857 14.229524
17 10.966349 9.647698 11.272619 6.019286 9.627857 6.687063 8.870714 8.091825 7.836032 8.238333 11.971667 13.097460
18 12.897222 11.095079 11.256825 6.745794 11.035952 7.405238 9.318730 8.674206 8.340952 8.952857 12.928968 14.523810
19 13.061429 11.275159 12.630397 7.005238 10.944683 7.559603 9.624320 9.111349 8.604683 9.243254 13.721984 14.288016
20 11.338571 9.769200 11.566746 6.195238 9.967937 6.811429 8.732857 8.495317 7.984365 8.507540 12.740952 13.859286
21 11.282698 9.673889 11.223968 5.975680 10.051905 6.730476 8.435397 8.150556 7.871587 8.278413 12.536270 13.626825
22 9.673333 8.264683 10.382302 5.195397 8.696825 5.802063 7.275873 7.533016 7.120873 7.247222 11.238810 11.770317
23 10.092143 8.980556 10.030476 5.304048 8.882143 5.816825 7.420952 7.387857 7.031587 7.173810 11.605635 12.395476
24 10.131905 8.741984 10.518254 5.498492 8.997381 6.189762 7.320317 7.597143 7.172857 7.259524 11.835873 12.041270
25 11.680238 9.898016 10.730397 6.294444 11.030397 7.410952 9.410238 8.822698 8.728016 8.677063 13.494762 14.329841
26 10.036000 8.770635 10.113333 5.798492 9.680159 6.474603 8.226032 7.920556 7.906270 7.937778 12.462222 12.993840
27 9.991984 7.916984 8.741032 5.276825 8.998175 5.852302 7.817680 7.182143 7.662143 7.451349 11.582857 13.096984
28 9.962143 8.272619 9.651349 5.461270 9.344206 5.951111 7.937857 7.341746 7.671905 7.267063 11.450159 12.932460
29 10.281746 8.422063 9.755079 5.672778 9.766667 6.300238 8.277619 7.568175 7.725952 7.616349 12.021667 12.880476
30 9.760397 8.211984 9.181587 5.195476 8.920873 5.657222 7.566905 6.904603 7.078571 7.010317 11.410794 12.279683
31 9.721984 8.218571 9.585556 5.078651 8.940397 5.692857 7.470397 6.646746 7.039206 6.615556 11.020317 12.348492
32 10.202640 8.669683 9.357619 5.524206 9.143492 6.091984 7.518413 6.896190 7.409365 7.057840 11.154365 12.746587
33 10.213254 8.000476 10.086667 5.169127 8.638413 5.652619 7.635635 6.591746 7.033413 6.502460 10.647222 11.315680
34 10.675556 9.065317 10.466190 5.380635 9.343651 6.275317 8.164603 7.503889 7.753730 7.779206 11.881667 13.764762
35 10.378571 8.525476 10.496746 5.398571 8.739444 5.938968 8.088889 6.907857 7.063016 7.213175 11.606825 13.390873
36 10.764365 9.296190 9.931270 5.387381 9.245873 6.353810 8.314603 7.012857 7.449762 7.221905 11.597619 13.754921
37 11.371190 9.722857 10.963889 5.638810 9.603968 6.646587 8.698492 7.704841 7.532143 7.645952 12.658968 14.827540
38 9.929524 8.863095 10.245280 4.462080 8.346190 5.408175 7.285079 6.724640 6.387381 6.423095 11.394127 13.094921
39 13.960635 12.361920 11.787302 6.898095 11.971032 7.882540 10.012619 9.489206 8.933413 9.402540 14.980000 16.928095
40 12.199841 10.619127 11.392698 5.854048 10.308175 6.841508 9.301905 8.581111 8.561667 8.519524 13.326429 15.758095
41 12.260800 10.581508 11.316190 5.468889 9.998254 6.667460 8.667778 8.279444 7.782540 8.176825 13.550952 15.663571
42 12.777460 10.966587 11.381667 6.349048 10.716032 7.526032 9.941349 8.802222 8.460873 9.039286 14.088175 17.116111
43 13.358651 11.915238 11.888095 6.554286 11.363571 7.769524 10.170873 9.458889 8.925840 9.800873 16.055873 18.580952
44 14.077179 12.215077 12.850000 6.805128 11.049692 7.597077 10.420667 9.005949 8.835436 9.559487 14.284103 17.692462
45 14.400698 12.762605 13.244791 6.862791 11.556355 7.894000 11.490186 9.447116 9.364977 9.642093 14.449116 18.232791
46 14.096846 12.565000 13.101462 6.983154 11.603462 7.844615 11.637769 9.014615 9.155154 9.582923 14.284692 19.428923
47 11.731508 10.361667 11.107698 5.413968 9.200952 6.172540 10.071920 7.322222 7.690397 7.933095 12.399762 16.473254
48 13.817239 12.136074 12.050061 6.297791 11.072699 7.641472 11.273804 8.655706 8.907791 9.249939 14.161288 17.849571
49 14.776094 13.048205 12.752650 7.306880 11.743291 8.209444 12.114231 9.496624 9.844060 10.012222 14.860000 18.847436
50 14.520350 12.493846 12.796224 7.096643 11.650769 8.277483 11.867343 9.456434 9.483706 9.968462 14.752168 18.312517
51 13.639921 11.697619 12.501667 5.991270 10.541667 7.275159 10.301667 8.462619 8.438730 8.687937 13.298889 17.182063
52 14.469134 11.692283 14.210000 7.018189 10.856905 7.379213 12.011969 9.121811 9.665197 9.677953 13.549055 19.183228
53 12.694286 9.451905 13.526190 5.343810 8.040476 5.884286 10.366190 5.556190 6.954286 7.820952 11.028095 17.103810

Step 15. Calculate the min, max and mean windspeeds and standard deviations of the windspeeds across all locations for each week (assume that the first week starts on January 2 1961) for the first 52 weeks.

data.groupby(data.index.isocalendar().week).describe()
RPT VAL ... BEL MAL
count mean std min 25% 50% 75% max count mean ... 75% max count mean std min 25% 50% 75% max
week
1 126.0 13.920000 6.341312 2.62 9.2600 13.020 17.3850 33.34 125.0 11.710880 ... 18.8700 38.20 126.0 18.249841 7.047385 4.17 13.3225 17.435 23.2900 37.63
2 53.0 15.444717 5.462035 5.29 11.3400 15.090 19.7500 28.75 53.0 13.504528 ... 18.8400 31.08 53.0 18.242830 6.881317 3.63 12.5000 19.040 23.3300 31.75
3 13.0 13.676154 4.875431 7.54 9.7100 11.460 18.0800 22.37 13.0 11.921538 ... 15.5000 23.04 13.0 19.094615 6.579779 6.79 15.7500 19.550 20.8300 32.83
4 12.0 16.208333 6.112314 2.08 11.7600 17.870 19.5925 24.25 12.0 14.823333 ... 20.8150 29.88 12.0 20.674167 8.356038 12.29 14.1975 17.795 25.5275 40.12
5 102.0 14.640098 5.648340 2.71 10.8425 14.310 18.5375 33.84 102.0 12.991569 ... 19.1350 27.71 102.0 17.584608 6.482263 4.83 12.9350 17.625 22.1700 34.25
6 126.0 13.203730 5.620867 2.79 9.1800 12.105 17.3600 30.13 126.0 11.508492 ... 17.8200 28.12 126.0 17.921587 6.092634 5.29 12.9600 17.330 21.6925 33.04
7 126.0 14.517460 5.916627 2.92 10.2725 14.190 18.2925 29.17 126.0 12.681349 ... 18.2700 32.08 126.0 17.130159 6.819665 5.09 11.8225 16.315 21.7900 37.04
8 126.0 13.422857 5.923096 1.54 9.0625 12.310 17.4900 32.38 126.0 11.822937 ... 16.7275 35.08 126.0 16.882540 7.251216 3.04 11.3025 16.130 22.2200 38.20
9 125.0 12.761360 5.240324 0.67 9.0800 12.580 16.3800 28.91 126.0 11.837460 ... 18.7950 31.13 125.0 16.602080 6.191920 3.17 12.5000 15.750 20.5400 31.66
10 125.0 13.526720 6.165086 2.29 8.7100 12.620 17.0400 35.80 126.0 11.758095 ... 17.2275 32.63 126.0 16.047381 6.572057 2.46 11.3900 15.670 20.4700 37.59
11 126.0 13.597143 6.412912 1.46 8.8725 12.665 18.1450 33.04 126.0 11.495079 ... 19.0175 34.92 125.0 17.331280 7.428510 4.54 11.5400 16.880 21.4600 40.37
12 126.0 13.006825 5.509073 2.92 9.2400 12.645 16.8475 32.13 126.0 11.621032 ... 18.6875 31.71 126.0 17.859365 6.902719 3.21 13.2650 18.185 22.3075 37.99
13 126.0 12.772540 5.278774 2.79 8.6125 12.895 16.0500 27.12 126.0 11.076349 ... 17.5800 32.21 126.0 16.486508 6.644671 2.04 12.6525 15.955 20.3800 31.20
14 126.0 13.903968 5.698092 3.88 9.8225 13.790 17.4900 32.58 126.0 11.025238 ... 17.4100 25.50 126.0 16.691349 6.979889 3.71 11.8225 16.125 20.9775 34.08
15 126.0 12.599444 5.335705 4.42 8.4300 11.650 15.6900 29.79 126.0 9.966667 ... 15.9975 27.00 126.0 15.900476 6.795427 4.33 11.3225 14.335 20.7775 33.95
16 126.0 12.753968 5.248461 3.67 8.6325 12.145 16.2375 27.84 126.0 11.111587 ... 15.5675 23.96 126.0 14.229524 5.328738 4.17 10.4800 13.750 17.6975 28.67
17 126.0 10.966349 5.378706 3.46 6.3225 9.960 14.0900 26.83 126.0 9.647698 ... 15.7300 26.12 126.0 13.097460 6.018248 2.21 8.3800 12.580 16.8250 32.05
18 126.0 12.897222 4.367054 1.63 9.8825 12.830 16.0650 27.25 126.0 11.095079 ... 16.3800 28.33 126.0 14.523810 6.216011 2.58 10.2000 13.415 18.6475 28.75
19 126.0 13.061429 5.517038 3.54 8.5925 13.025 16.4900 30.91 126.0 11.275159 ... 17.2875 32.91 126.0 14.288016 5.699596 3.33 10.0625 14.500 18.3400 26.83
20 126.0 11.338571 5.404169 2.42 6.8400 10.125 15.0775 25.17 125.0 9.769200 ... 16.1475 26.42 126.0 13.859286 5.865042 3.58 9.5225 13.480 17.3850 32.17
21 126.0 11.282698 5.200316 2.62 7.5600 10.815 13.9725 28.79 126.0 9.673889 ... 15.6975 28.12 126.0 13.626825 5.258812 4.04 9.4550 13.480 16.6875 29.50
22 126.0 9.673333 4.053188 2.04 6.7300 9.250 11.9875 21.84 126.0 8.264683 ... 13.6575 26.38 126.0 11.770317 5.001233 1.75 7.8525 11.650 15.1000 28.04
23 126.0 10.092143 4.516349 2.17 6.7600 9.665 12.5700 23.21 126.0 8.980556 ... 14.5400 21.34 126.0 12.395476 5.383357 2.21 8.3825 11.895 16.0700 32.79
24 126.0 10.131905 4.410570 1.00 6.5400 9.960 12.8300 21.59 126.0 8.741984 ... 14.6475 25.25 126.0 12.041270 5.419266 2.79 7.8525 11.685 15.3400 27.16
25 126.0 11.680238 4.415008 2.92 7.9700 11.145 14.5300 22.71 126.0 9.898016 ... 16.2400 29.79 126.0 14.329841 5.873487 3.08 10.1400 14.020 17.4475 28.38
26 125.0 10.036000 3.868826 3.46 6.9200 9.670 12.7900 20.50 126.0 8.770635 ... 15.6050 24.71 125.0 12.993840 4.516285 4.54 9.3300 12.710 15.9200 25.17
27 126.0 9.991984 4.742847 2.00 6.7900 8.960 12.4100 25.84 126.0 7.916984 ... 14.5000 23.00 126.0 13.096984 5.292558 4.50 9.0800 12.560 16.2800 29.63
28 126.0 9.962143 4.661313 2.75 6.2500 9.105 13.3500 22.50 126.0 8.272619 ... 14.4175 23.83 126.0 12.932460 5.565273 2.13 8.7400 12.420 16.3200 28.46
29 126.0 10.281746 4.578130 1.71 6.8325 10.330 13.4575 22.34 126.0 8.422063 ... 15.2175 24.41 126.0 12.880476 5.472898 2.29 8.5000 12.810 17.3800 25.37
30 126.0 9.760397 4.056483 1.25 6.4800 9.335 12.5500 20.33 126.0 8.211984 ... 14.2700 22.37 126.0 12.279683 5.055287 2.88 8.2100 12.310 15.6900 25.37
31 126.0 9.721984 4.143365 2.79 6.5825 9.420 12.1075 22.42 126.0 8.218571 ... 13.7375 21.67 126.0 12.348492 5.053851 2.25 9.0925 12.625 16.3875 24.83
32 125.0 10.202640 3.982815 2.67 6.8700 10.250 13.1300 20.08 126.0 8.669683 ... 13.6925 24.08 126.0 12.746587 5.353812 3.04 8.9650 12.500 16.3125 29.95
33 126.0 10.213254 4.914926 3.17 6.6400 9.040 13.4075 26.38 126.0 8.000476 ... 13.5650 23.25 125.0 11.315680 5.587084 2.17 7.1700 10.750 14.6200 34.33
34 126.0 10.675556 4.874965 2.42 7.1700 10.460 14.2800 24.67 126.0 9.065317 ... 16.0700 24.83 126.0 13.764762 5.642352 3.37 9.1250 13.290 18.0000 30.46
35 126.0 10.378571 4.976603 0.96 6.0800 10.040 13.5900 23.38 126.0 8.525476 ... 14.7900 26.46 126.0 13.390873 5.962103 3.83 8.7500 12.395 17.3900 28.84
36 126.0 10.764365 5.086312 1.50 6.6500 10.400 14.3675 29.54 126.0 9.296190 ... 14.9150 24.17 126.0 13.754921 5.692819 3.37 9.4700 13.940 17.0300 30.34
37 126.0 11.371190 5.662910 1.79 7.2600 10.775 14.9800 31.42 126.0 9.722857 ... 16.2500 25.75 126.0 14.827540 6.350553 2.83 10.3800 14.830 18.0500 35.13
38 126.0 9.929524 4.585719 0.79 6.5325 9.165 12.7800 24.79 126.0 8.863095 ... 14.7400 23.04 126.0 13.094921 5.420672 0.67 9.0825 12.670 17.2975 29.63
39 126.0 13.960635 5.313510 3.37 10.0100 13.545 17.1300 27.00 125.0 12.361920 ... 19.4950 28.79 126.0 16.928095 6.943457 4.04 11.9125 15.895 20.8100 33.63
40 126.0 12.199841 4.458238 2.37 8.9200 12.380 15.0900 25.29 126.0 10.619127 ... 17.4275 26.71 126.0 15.758095 6.364950 2.04 11.2900 15.565 20.4100 32.96
41 125.0 12.260800 5.400736 3.04 8.2900 11.790 15.1600 25.92 126.0 10.581508 ... 17.4375 34.83 126.0 15.663571 6.537501 3.33 10.7200 15.120 19.9875 36.51
42 126.0 12.777460 5.718162 2.04 8.6600 12.145 16.2700 28.62 126.0 10.966587 ... 17.0825 32.63 126.0 17.116111 6.401907 5.04 12.1125 16.395 21.5900 33.45
43 126.0 13.358651 6.116732 1.50 9.0200 12.670 17.0100 29.08 126.0 11.915238 ... 20.7000 38.96 126.0 18.580952 6.799425 6.17 12.9900 17.965 23.4100 36.63
44 195.0 14.077179 5.833335 2.00 9.9600 13.620 17.5400 32.17 195.0 12.215077 ... 18.1450 39.04 195.0 17.692462 7.021542 4.54 12.3550 17.250 21.8400 37.59
45 215.0 14.400698 6.254240 1.63 9.7700 13.790 18.1200 33.12 215.0 12.762605 ... 18.7300 33.34 215.0 18.232791 7.140148 2.96 13.2900 17.960 23.1300 38.04
46 130.0 14.096846 6.405892 2.92 9.0800 13.000 18.7800 30.21 130.0 12.565000 ... 18.8800 31.96 130.0 19.428923 8.585392 2.00 13.1800 18.935 24.7150 41.25
47 126.0 11.731508 5.234852 2.67 8.0950 10.750 14.8300 26.50 126.0 10.361667 ... 16.4100 30.00 126.0 16.473254 6.677397 4.25 10.8625 15.710 20.8900 34.83
48 163.0 13.817239 6.125372 3.08 9.0800 13.170 17.8100 34.37 163.0 12.136074 ... 18.7900 42.38 163.0 17.849571 6.642826 4.79 12.7300 17.290 22.5850 42.54
49 233.0 14.776094 6.192947 0.67 10.3400 13.920 19.0800 35.38 234.0 13.048205 ... 18.8700 34.42 234.0 18.847436 7.020126 3.25 14.2300 19.165 23.0975 38.79
50 143.0 14.520350 6.803921 1.96 9.7300 14.420 18.2900 30.91 143.0 12.493846 ... 18.7900 29.25 143.0 18.312517 6.500093 6.50 13.6700 18.710 21.8950 37.12
51 126.0 13.639921 5.313674 1.79 9.5225 13.270 16.9950 28.71 126.0 11.697619 ... 17.2675 30.84 126.0 17.182063 6.303056 2.62 13.0100 16.685 20.7175 38.25
52 127.0 14.469134 5.701056 3.00 10.2450 13.620 18.1250 32.50 127.0 11.692283 ... 17.2300 31.25 127.0 19.183228 6.834899 4.58 14.6450 18.710 22.7700 41.46
53 21.0 12.694286 5.804934 3.71 8.6700 11.750 16.7500 23.83 21.0 9.451905 ... 13.3700 30.46 21.0 17.103810 5.909188 7.12 13.7000 16.580 23.1300 26.83

53 rows × 96 columns

Leave a comment